skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Sinibaldi, Edoardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sinibaldi, Edoardo (Ed.)
    The study of plant root growth in real time has been difficult to achieve in an automated, high-throughput, and systematic fashion. Dynamic imaging of plant roots is important in order to discover novel root growth behaviors and to deepen our understanding of how roots interact with their environments. We designed and implemented the Generating Rhizodynamic Observations Over Time (GROOT) robot, an automated, high-throughput imaging system that enables time-lapse imaging of 90 containers of plants and their roots growing in a clear gel medium over the duration of weeks to months. The system uses low-cost, widely available materials. As a proof of concept, we employed GROOT to collect images of root growth ofOryza sativa,Hudsonia montana, and multiple species of orchids includingPlatanthera integrilabiaover six months. Beyond imaging plant roots, our system is highly customizable and can be used to collect time- lapse image data of different container sizes and configurations regardless of what is being imaged, making it applicable to many fields that require longitudinal time-lapse recording. 
    more » « less
  2. Sinibaldi, Edoardo (Ed.)
    The use of face masks by the general population during viral outbreaks such as the COVID-19 pandemic, although at times controversial, has been effective in slowing down the spread of the virus. The extent to which face masks mitigate the transmission is highly dependent on how well the mask fits each individual. The fit of simple cloth masks on the face, as well as the resulting perimeter leakage and face mask efficacy, are expected to be highly dependent on the type of mask and facial topology. However, this effect has, to date, not been adequately examined and quantified. Here, we propose a framework to study the efficacy of different mask designs based on a quasi-static mechanical model of the deployment of face masks onto a wide range of faces. To illustrate the capabilities of the proposed framework, we explore a simple rectangular cloth mask on a large virtual population of subjects generated from a 3D morphable face model. The effect of weight, age, gender, and height on the mask fit is studied. The Centers for Disease Control and Prevention (CDC) recommended homemade cloth mask design was used as a basis for comparison and was found not to be the most effective design for all subjects. We highlight the importance of designing masks accounting for the widely varying population of faces. Metrics based on aerodynamic principles were used to determine that thin, feminine, and young faces were shown to benefit from mask sizes smaller than that recommended by the CDC. Besides mask size, side-edge tuck-in, or pleating, of the masks as a design parameter was also studied and found to have the potential to cause a larger localized gap opening. 
    more » « less